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1 Recall

Multiple Regression

General format:
Yn×1 = Xn×pβ + ϵ.

n > p,Rank(X) = p.

The least squares estimate is:
min 1

2
∥Y − Xβ∥2.

From the least squares estimate, we can get the estimator of β:

β̂ = (XTX)−1XTY.

We can know β̂’s distribution:

E[ϵ|X] = 0,V[ϵ|X] = σ2I ⇒ E[β̂] = β,V[β̂] = σ2(XTX)−1.

Example 1 There exist p kinds of parameters: X = (X1, . . . , Xp), we suppose that X1 = Income and
X2 = Cost, according to general logic, there may be X2 = αX1, then we can use X1 and X2 to build a
linear regression model (3 or more parameters are similar situations).

2 Model Selection

If we have p parameters, we can build 2p−1 =
(
p
1

)
+
(
p
2

)
+ · · ·+

(
p
p

)
linear regression models. Therefore,

we need ”Model Selection”.

3 Unbiased estimate of σ2

Ŷ = Xβ̂ = X(XTX)−1XTY, therefore Ŷ is in X’s column space. Suppose that e = Y − Ŷ, ⟨e, Ŷ⟩ = 0,
this has been proved in the last class. If P is a Projection Matrix, then PT = P,P2 = P ⇒ λ = 1 or 0.
Property: (P = X(XTX)−1XT ).
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• P2 = X(XTX)−1XTX(XTX)−1XT = P.

• P(Xa) = PXa = X(XTX)−1XTXa = Xa. (Xa must be in X’s column space)

• P = DTDD. (Eigen Value Decomposition), D =



1

. . .

1

0

. . .

0


. (There are p ”1”s)

• Rank(P) = tr(X(XTX)−1XT ), (tr(AB) = tr(BA)). Namely: tr((XTX)−1XTX) = tr(Ip) = p.

• (I−P)2 = I+P2−2PI = I+P−2P = I−P. (I−P is a projection matrix too.) Rank(I−P) = n−p.

I − P = VTDV,D =



1

. . .

1

0

. . .

0


. (There are (n− p) ”1”s)

Theorem 1 Having the above properties, we can prove the following equation:

E[eT e] = (n− p)σ2.

Proof 1 Since e = Y − Ŷ = (I − P)Y and Y = Xβ + ϵ, we have

eT e = YT (I − P)Y = (Xβ + ϵ)T (I − P)(Xβ + ϵ) = ϵT (I − P)ϵ.

Denote Z = Vϵ. Since I − P = VTDV, then eT e = (Vϵ)TD(Vϵ).

• E[Z|X] = 0.

• V(Z|X) = VTV(ϵ)V = σ2VTV = σ2.

Therefore, Z =


z1
...
zn

 ∈ Rn, E[zi] = 0,V(zi) = σ2. E[eT e] = ZTDZ =
∑n−p

i=1 E(z2i ) = (n− p)σ2.

4 Inference

We suppose that:
ϵ | X ∼ N(0, σ2I) ⇒ Y | X ∼ N(Xβ, σ2I).
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Therefore:
β̂ | X ∼ N

(
β, σ2(XTX)−1

)
.

This implies:
(XTX)1/2(β − β̂)

σ
∼ N(0, I).

Let Z = Vϵ. Then:
Z ∼ N(0, σ2I).

We also have:
eT e
n− p

=

n−p∑
i=1

z2i ∼ σ2χ2(n− p).

This leads to:
eT e

(n− p)σ2
∼ χ2(n− p).

Finally, we can derive the following distribution:
√
n− p(XTX)1/2(β − β̂)

∥e∥ ∼ t(n− p).

5 Logistic Regression

5.1 Bernoulli

There exists a data set: {(xi, yi)}ni=1, yi ∈ {0, 1}. We can believe that y has the distribution:

yi|xi ∼ Ber(pi).

∃f(xi), such that 0 ≤ pi = f(xi) ≤ 1. For example, Sigmoid Function: f(xi) =
ex

T
i β

1+ex
T
i

β
(Link Function

- link β and pi). Logistic Regression has no RSS, so we can only use MLE to find the parameter pi.
MLE Function is:

n∏
i=1

{
(pi)

yi(1− pi)
1−yi

}
.

This becomes the optimization problem:

max
β

n∑
i=1

{yi log pi + (1− yi) log(1− pi)} ⇐⇒ max
β

n∑
i=1

{
yi log pi

1− pi
+ log(1− pi)

}
.

Due to:
log(1− pi) = − log(1 + ex

T
i β) and log pi

1− pi
= xT

i β.

The above optimization problem is:

max
β

{
yix

T
i β − log(1 + ex

T
i β)

}
.

(Which is called General Linear Model - GLM) Notice: This problem usually has no analytic solution,
so we need to use Gradient Descent (GD) or Newton’s method, etc., to solve it.
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5.2 Poisson

When the data set is: {(xi, yi)}ni=1, yi ∈ {0, 1, . . . ,∞}. We can believe that y has the distribution:

yi|xi ∼ Poisson(λi).

It also has a Link Function: λi = xT
i β. After that, the process is similar, using MLE to solve for β.
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