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1 Recall

Multiple Regression

General format:
Yn><1 - anpﬁ + e

n > p, Rank(X) = p.

The least squares estimate is: .
min §||Y — X312

From the least squares estimate, we can get the estimator of 5:
B =X"X)"'x"Y.
We can know B ’s distribution:

Ele|X] = 0, V[e|X] = 0?1 = E[] = 3, V[3] = 0>(XTX) L.

Example 1 There exist p kinds of parameters: X = (X1,...,X,), we suppose that X; = Income and
X, = Cost, according to general logic, there may be Xo = aXy, then we can use X1 and Xy to build a

linear regression model (3 or more parameters are similar situations).

2 Model Selection

If we have p parameters, we can build 27 — 1 = (7‘1’) + (’2’) 4+t (Z ) linear regression models. Therefore,

we need "Model Selection”.

3 Unbiased estimate of o2

Y = X3 = X(XTX)'XTY, therefore Y is in X’s column space. Suppose that e = Y — Y, (e, Y) = 0,
this has been proved in the last class. If P is a Projection Matrix, then P = P,P? =P = XA =1 or 0.
Property: (P = X(XTX)"'XT).



. P? = X(X7X)"'XTX(XTX)"'XT = P.
e P(Xa) = PXa = X(X7X) " 1X"Xa = Xa. (Xa must be in X’s column space)

1

o P=DTDD. (Eigen Value Decomposition), D = . (There are p "17s)

0
e Rank(P) = tr(X(X*"X)'X"), (tr(AB) = tr(BA)). Namely: tr((X"X)"'X"X) = tr(I,) = p.
o I-P)2=14+P2—2PI =1+P—2P =1-P. (I-P is a projection matrix too.) Rank(I-P) = n—p.
1

I-P=V'DV,D= . (There are (n —p) 717s)

Theorem 1 Hawving the above properties, we can prove the following equation:

Ele’e] = (n — p)o°.

Proof 1 Sincece=Y —Y = (I —P)Y and Y = Xf3 + ¢, we have
ele=Y'I-P)Y=(XB+e) I-P)(XB+e€)=¢(I-P)e.
Denote Z = Ve. Since 1 — P = VIDV, then e’'e = (Ve)'D(Ve).
o E[ZIX] =0.

e V(ZIX) = VTV (e)V = 02VTV = 52

21

Therefore, Z=| : | € R", E[z;] =0,V(z;) = 0*. EleTe] =Z"DZ =) "E(z?) = (n — p)o>.

Zﬂ,

4 Inference

We suppose that:
e| X~ N(0,0°T) = Y|X~NXB,ol).



Therefore:
BIX~N (8,05 (XTX)).

This implies: R
(XTX)"2(8 - B)

~ N(0,I).
o
Let Z = Ve. Then:
Z ~ N(0,0%1).
We also have:
efe =X
=Y 22~ X (n—p).
[ -
This leads to: -
e'e 9

Finally, we can derive the following distribution:

Vi = p(X"X)?(5 - 6)

lell

~t(n —p).

5 Logistic Regression

5.1 Bernoulli

There exists a data set: {(z;,v:)}—1,v: € {0,1}. We can believe that y has the distribution:

yi|90i ~ Ber(pi).

2T
3f(x;), such that 0 < p;, = f(z;) < 1. For example, Sigmoid Function: f(z;) = 1i ;?5 (Link Function

- link § and p;). Logistic Regression has no RSS, so we can only use MLE to find the parameter p;.
MLE Function is:

n

H {(pz)yl(l - pi)l_yi’} :

i=1

This becomes the optimization problem:

. - Di
max logp; + (1 — ;) log(l — p;)} <= max ; 1o +log(1 —p;) ¢ .
: ;{y gp; + (1 —yi) log(1 — pi)} : ;{y BT +1log( p)}

Due to:
log(1 —p;) = —log(1+¢% ?) and log T b x] .
—Di

3

The above optimization problem is:
max {yla:lTB —log(1 + emgﬂ)} .

(Which is called General Linear Model - GLM) Notice: This problem usually has no analytic solution,

so we need to use Gradient Descent (GD) or Newton’s method, etc., to solve it.



5.2 Poisson
When the data set is: {(z;,v:) 1,9 € {0,1,...,00}. We can believe that y has the distribution:
y;|z; ~ Poisson(\;).

It also has a Link Function: \; = 27'3. After that, the process is similar, using MLE to solve for /3.
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